论文标题

杂种光学力传感器中的同伴相干量子噪声消除

Homodyne coherent quantum noise cancellation in a hybrid optomechanical force sensor

论文作者

Allahverdi, H., Motazedifard, Ali, Dalafi, A., Vitali, D., Naderi, M. H.

论文摘要

在本文中,我们提出了一个实验可行的方案,以增强杂交光学机械设置的力敏感性,该设置受挤压真空注射的辅助,超出标准量子限制(SQL)。该方案基于相干量子噪声取消(CQNC)策略的组合,并对腔输出频谱进行了多种同伴检测,其中优化了局部振荡器的相位。在CQNC中,由于破坏性的量子干扰,实现系统中的负质量振荡器会导致从力学上的背部噪声准确取消。挤压真空注射可以增强这种取消的效果,并允许在宽频带中达到子-SQL敏感性,并在较低的输入激光功率下达到。我们在这里表明,与检测到光学输出相位正交的标准案例相比,采用变分的同伴读数使我们能够增强这种噪声的消除量高达$ 40〜 \ mathrm {db} $,从而导致了$ 10^{ - 19} { - 19} { - 19} { - 19}的显着力敏感性\ Mathrm {n}/\ sqrt {\ mathrm {hz}} $,与标准情况相比,约2级增强。此外,我们表明,在非零空腔引导下,可以在没有变异同源读数的标准情况下的三到五倍的级别上放大信号响应,从而改善了信号到噪声比率(SNR)。最后,本文开发的变异读数CQNC可以应用于其他类似光学机械的平台,例如悬浮系统和多模光学阵列或晶体以及基于约瑟夫森的光学机械系统。

In this paper, we propose an experimentally viable scheme to enhance the sensitivity of force detection in a hybrid optomechanical setup assisted by squeezed vacuum injection, beyond the standard quantum limit (SQL). The scheme is based on a combination of the coherent quantum noise cancellation (CQNC) strategy with a variational homodyne detection of the cavity output spectrum in which the phase of the local oscillator is optimized. In CQNC, realizing a negative-mass oscillator in the system leads to exact cancellation of the backaction noise from the mechanics due to destructive quantum interference. Squeezed vacuum injection enhances this cancellation and allows sub-SQL sensitivity to be reached in a wide frequency band and at much lower input laser powers. We show here that the adoption of variational homodyne readout enables us to enhance this noise cancellation up to $40 ~\mathrm{dB}$ compared to the standard case of detection of the optical output phase quadrature, leading to a remarkable force sensitivity of the order of $10^{-19} \mathrm{N}/\sqrt{\mathrm{Hz}}$, around 2-order enhancement compared to the standard case. Moreover, we show that at nonzero cavity detuning, the signal response can be amplified at a level three to five times larger than that in the standard case without variational homodyne readout, improving the signal-to-noise-ratio (SNR). Finally, the variational readout CQNC developed in this paper may be applied to other optomechanical-like platforms such as levitated systems and multimode optomechanical arrays or crystals as well as Josephson-based optomechanical systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源