论文标题

Neroic:从在线图像收集物中对象的神经渲染

NeROIC: Neural Rendering of Objects from Online Image Collections

论文作者

Kuang, Zhengfei, Olszewski, Kyle, Chai, Menglei, Huang, Zeng, Achlioptas, Panos, Tulyakov, Sergey

论文摘要

我们提出了一种新颖的方法,可以从在线图像集合中获取对象表示,从而从具有不同的相机,照明和背景的照片中捕获高质量的几何形状和任意对象的物质特性。这使各种以对象为中心的渲染应用程序,例如来自充满挑战的内部输入的新型视图综合,重新构成和协调的背景组成。使用多阶段方法扩展神经辐射场,我们首先推断表面几何形状并完善估计的初始相机参数,同时利用粗糙的前景对象掩盖来提高训练效率和几何形状质量。我们还引入了强大的正常估计技术,该技术消除了几何噪声的影响,同时保留了关键细节。最后,我们提取表面材料的特性和环境照明,这些特性在球形谐波中表示,其扩展可以处理瞬态元素,例如锋利的阴影。这些组件的结合导致高度有效的对象获取框架。广泛的评估和比较证明了我们方法在捕获高质量的几何形状和外观特性方面的优势。

We present a novel method to acquire object representations from online image collections, capturing high-quality geometry and material properties of arbitrary objects from photographs with varying cameras, illumination, and backgrounds. This enables various object-centric rendering applications such as novel-view synthesis, relighting, and harmonized background composition from challenging in-the-wild input. Using a multi-stage approach extending neural radiance fields, we first infer the surface geometry and refine the coarsely estimated initial camera parameters, while leveraging coarse foreground object masks to improve the training efficiency and geometry quality. We also introduce a robust normal estimation technique which eliminates the effect of geometric noise while retaining crucial details. Lastly, we extract surface material properties and ambient illumination, represented in spherical harmonics with extensions that handle transient elements, e.g. sharp shadows. The union of these components results in a highly modular and efficient object acquisition framework. Extensive evaluations and comparisons demonstrate the advantages of our approach in capturing high-quality geometry and appearance properties useful for rendering applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源