论文标题
不确定性意识到的级联扩张过滤,以实现高效降低
Uncertainty-Aware Cascaded Dilation Filtering for High-Efficiency Deraining
论文作者
论文摘要
Dering是一项重要且基本的计算机视觉任务,旨在消除在雨天下捕获的图像或视频中的雨条和积累。现有的DERANE方法通常使雨模型成为启发式假设,从而迫使它们采用复杂的优化或迭代精致以获得高恢复质量。但是,这导致了耗时的方法,并影响了解决与假设偏离的降雨模式的有效性。在本文中,我们提出了一种简单而有效的DEDARNING方法,通过将DED定为预测过滤问题而没有复杂的降雨模型假设。具体而言,我们确定了空间变化的预测滤波(SPFILT),该预测性滤波(SPFILT)通过深网自适应预测适当的内核,以滤除不同的单个像素。由于可以通过良好的卷积实施过滤,因此我们的方法可以显着有效。我们进一步提出了Efderain+,其中包含三个主要贡献,以解决残留的雨痕,多规模和多样化的降雨模式而不会损害效率。首先,我们提出了不确定性意识的级联预测过滤(UC-PFILT),这些滤波器可以通过预测的内核来识别重建清洁像素的困难,并有效地删除残留的降雨痕迹。其次,我们设计了体重分担的多尺度扩张过滤(WS-MS-DFILT),以处理多尺度的雨条,而不会损害效率。第三,为了消除各种降雨模式的差距,我们提出了一种新型的数据增强方法(即RainMix)来训练我们的深层模型。通过将所有贡献与对不同变体的复杂分析相结合,我们的最终方法优于四个单图像数据集的基线方法,并且在恢复质量和速度方面都优于一个视频数据集。
Deraining is a significant and fundamental computer vision task, aiming to remove the rain streaks and accumulations in an image or video captured under a rainy day. Existing deraining methods usually make heuristic assumptions of the rain model, which compels them to employ complex optimization or iterative refinement for high recovery quality. This, however, leads to time-consuming methods and affects the effectiveness for addressing rain patterns deviated from from the assumptions. In this paper, we propose a simple yet efficient deraining method by formulating deraining as a predictive filtering problem without complex rain model assumptions. Specifically, we identify spatially-variant predictive filtering (SPFilt) that adaptively predicts proper kernels via a deep network to filter different individual pixels. Since the filtering can be implemented via well-accelerated convolution, our method can be significantly efficient. We further propose the EfDeRain+ that contains three main contributions to address residual rain traces, multi-scale, and diverse rain patterns without harming the efficiency. First, we propose the uncertainty-aware cascaded predictive filtering (UC-PFilt) that can identify the difficulties of reconstructing clean pixels via predicted kernels and remove the residual rain traces effectively. Second, we design the weight-sharing multi-scale dilated filtering (WS-MS-DFilt) to handle multi-scale rain streaks without harming the efficiency. Third, to eliminate the gap across diverse rain patterns, we propose a novel data augmentation method (i.e., RainMix) to train our deep models. By combining all contributions with sophisticated analysis on different variants, our final method outperforms baseline methods on four single-image deraining datasets and one video deraining dataset in terms of both recovery quality and speed.