论文标题

在m-o.ore决定因素上

On M-O.Ore determinants

论文作者

Fresnel, Jean, Matignon, Michel

论文摘要

在包含FQ的场k上的差异线的某些FQ空间的存在使我们证明了n位不确定的摩尔基质的决定因素与第一行辅助器的摩尔基质的决定因素联系在一起。这些相同的空间可以用差异形式的残基来解释麋鹿配对。这种配对使FQ线性多项式的根和其反向多项式的根的FQ矢量空间。

The existence of certain Fq-spaces of differential forms of the projective line over a field K containing Fq leads us to prove an identity linking the determinant of the Moore matrix of n indeterminates with the determinant of the Moore matrix of the cofactors of its first row. These same spaces give an interpretation of Elkies pairing in terms of residues of differential forms. This pairing puts in duality the Fq-vector space of the roots of a Fq-linear polynomial and that of the roots of its reversed polynomial.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源