论文标题
使用耦合的主动学习,多局部建模和子集模拟对先进核燃料的可靠性估算
Reliability Estimation of an Advanced Nuclear Fuel using Coupled Active Learning, Multifidelity Modeling, and Subset Simulation
论文作者
论文摘要
三结构各向同性(TRISO)涂层颗粒燃料是一种强大的核燃料,确定其可靠性对于先进的核技术的成功至关重要。但是,Triso故障概率很小,相关的计算模型很昂贵。我们使用了几种1D和2D模型估算Triso Fuels的故障概率,我们使用了耦合的主动学习,多重性模型和子集仿真。通过多重模型,我们用来自两个低保真度(LF)模型的信息融合代替了昂贵的高保真度(HF)模型评估。对于一维TRISO模型,我们考虑了三种多重模型建模策略:仅Kriging,Kriging LF预测加上Kriging校正以及深神经网络(DNN)LF预测以及Kriging校正。尽管这些多重模型建模策略的结果令人满意地比较了,但采用来自两个LF模型的信息融合的策略始终被称为HF模型。接下来,对于2D Triso模型,我们考虑了两种多重模型策略:DNN LF预测加上Kriging校正(数据驱动)和1D Triso LF预测以及Kriging校正(基于物理)。如预期的那样,基于物理的策略始终需要对HF模型的最少呼叫。但是,由于DNN预测是瞬时的,因此数据驱动的策略的总体模拟时间较低,并且1D Triso模型需要不可忽略的仿真时间。
Tristructural isotropic (TRISO)-coated particle fuel is a robust nuclear fuel and determining its reliability is critical for the success of advanced nuclear technologies. However, TRISO failure probabilities are small and the associated computational models are expensive. We used coupled active learning, multifidelity modeling, and subset simulation to estimate the failure probabilities of TRISO fuels using several 1D and 2D models. With multifidelity modeling, we replaced expensive high-fidelity (HF) model evaluations with information fusion from two low-fidelity (LF) models. For the 1D TRISO models, we considered three multifidelity modeling strategies: only Kriging, Kriging LF prediction plus Kriging correction, and deep neural network (DNN) LF prediction plus Kriging correction. While the results across these multifidelity modeling strategies compared satisfactorily, strategies employing information fusion from two LF models consistently called the HF model least often. Next, for the 2D TRISO model, we considered two multifidelity modeling strategies: DNN LF prediction plus Kriging correction (data-driven) and 1D TRISO LF prediction plus Kriging correction (physics-based). The physics-based strategy, as expected, consistently required the fewest calls to the HF model. However, the data-driven strategy had a lower overall simulation time since the DNN predictions are instantaneous, and the 1D TRISO model requires a non-negligible simulation time.