论文标题
Spin-1/2 J1-J2 Heisenberg模型中的热碱过渡
Thermal Ising transition in the spin-1/2 J1-J2 Heisenberg model
论文作者
论文摘要
使用SU(2)不变的有限温度张量网络算法,我们提供了强有力的数值证据,以支持Spin-1/2 $ J_1-J_2 $ HEISENBERG模型在Square Lattice上的Spin-1/2 $ J_1-J_2 $ HEISENBER中的伊辛过渡。在$ j_2 $的单位中,临界温度达到$ t_c/j_2 \ simeq 0.18 $左右$ j_2/j_1 \ simeq 1.0 $的最大值。在接近$ j_2/j_1 \ simeq 0.6 $的零温度边界时,它会受到很大的抑制,并且它以$ 1/\ log(j_2/j_1)$的$ 1/\ log(j_2/j_1)$消失在大型$ j_2/j_1 $限制中,如Chandra,Coleman and Coleman和Larkin [Phys》中的预测。莱特牧师。 64、88,1990]。执行SU(2)对称性对于避免有限温度SU的伪像(2)U(1)算法的对称性破裂,这在研究量子Heisenberg抗铁磁铁的热特性时开辟了新的观点。
Using an SU(2) invariant finite-temperature tensor network algorithm, we provide strong numerical evidence in favor of an Ising transition in the collinear phase of the spin-1/2 $J_1-J_2$ Heisenberg model on the square lattice. In units of $J_2$, the critical temperature reaches a maximal value of $T_c/J_2\simeq 0.18$ around $J_2/J_1\simeq 1.0$. It is strongly suppressed upon approaching the zero-temperature boundary of the collinear phase $J_2/J_1\simeq 0.6$, and it vanishes as $1/\log(J_2/J_1)$ in the large $J_2/J_1$ limit, as predicted by Chandra, Coleman and Larkin [Phys. Rev. Lett. 64, 88, 1990]. Enforcing the SU(2) symmetry is crucial to avoid the artifact of finite-temperature SU(2) symmetry breaking of U(1) algorithms, opening new perspectives in the investigation of the thermal properties of quantum Heisenberg antiferromagnets.