论文标题

有限类型和sofic偏移的偏移的子系统熵在可数的群体上

Subsystem entropies of shifts of finite type and sofic shifts on countable amenable groups

论文作者

Bland, Robert, McGoff, Kevin, Pavlov, Ronnie

论文摘要

在这项工作中,我们研究了有限类型(SFT)和可计数符合群体的ships段转移的子系统的熵。我们证明,对于任何可数的Amenable $ g $,如果$ x $是$ g $ -sft,带有正拓扑熵$ h(x)> 0 $,则$ x $的SFT子系统的熵在间隔$ [0,h(x)] $中是密集的。实际上,我们证明了同一结果的“相对”版本:如果$ x $是$ g $ -sft,$ y \ y \ subset x $是一个子班次,以至于$ h(y)<h(x)$,那么$ y \ y \ y \ y \ y \ subset z \ subset z \ subset x $ in $ in $ in $ in $ [h(y),h(y),h(h(x)$)。我们还为Sofic $ g $ chhifts建立了类似的结果。

In this work we study the entropies of subsystems of shifts of finite type (SFTs) and sofic shifts on countable amenable groups. We prove that for any countable amenable group $G$, if $X$ is a $G$-SFT with positive topological entropy $h(X) > 0$, then the entropies of the SFT subsystems of $X$ are dense in the interval $[0, h(X)]$. In fact, we prove a "relative" version of the same result: if $X$ is a $G$-SFT and $Y \subset X$ is a subshift such that $h(Y) < h(X)$, then the entropies of the SFTs $Z$ for which $Y \subset Z \subset X$ are dense in $[h(Y), h(X)]$. We also establish analogous results for sofic $G$-shifts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源