论文标题

非线性Chern系统中的手性边缘孤子

Chiral edge soliton in nonlinear Chern systems

论文作者

Ezawa, Motohiko

论文摘要

我们通过在Chern绝缘子中包括两个具有相反手性的手性边缘状态的非线性来研究对手性边缘状态的影响。我们通过在边缘上的一个位点给一个位点脉冲并分析波数据包的时间演变来探索淬火动力。没有非线性,初始脉冲对称扩散并扩散。另一方面,由于存在非线性,孤立波是由非线性项的自捕获效应形成的,并沿边缘进行了单向传播,我们将其识别为手性边缘孤子。非线性的进一步增加会引起自捕捞跃迁,其中手性波数据包停止了其运动。令人着迷的是,非线性仅通过更改初始条件而无需更改样本来控制。

We study the effect on the chiral edge states by including a nonlinearity to a Chern insulator which has two chiral edge states with opposite chiralities. We explore a quench dynamics by giving a pulse to one site on an edge and analyzing the time evolution of a wave packet. Without the nonlinearity, an initial pulse spreads symmetrically and diffuses. On the other hand, with the nonlinearity present, a solitary wave is formed by the self-trapping effect of the nonlinear term and undergoes a unidirectional propagation along the edge, which we identify as a chiral edge soliton. A further increase of the nonlinearity induces a self-trapping transition, where the chiral wave packet stops its motion. It is intriguing that the nonlinearity is controlled only by changing the initial condition without changing a sample.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源