论文标题
模棱两可的结和结浮子同源性
Equivariant knots and knot Floer homology
论文作者
论文摘要
我们使用打结浮子同源性定义了几个模棱两可的一致性。我们表明,我们的不变性为e夫属属提供了一个下限,并用它为一个强烈可逆的切成片提供了一个高度的片段,其均值属属属于任意的大型,回答了Boyle和Issa的问题。我们还将形式主义应用于几个看似非等级的问题。特别是,我们表明,可以使用结式同源物来检测异国情调的切片磁盘,由于海顿而恢复了一个示例,并由于米勒和鲍威尔在稳定距离方面扩展了结果。我们的形式主义提出了建立模棱两可一致性群体的非交流性的可能途径。
We define several equivariant concordance invariants using knot Floer homology. We show that our invariants provide a lower bound for the equivariant slice genus and use this to give a family of strongly invertible slice knots whose equivariant slice genus grows arbitrarily large, answering a question of Boyle and Issa. We also apply our formalism to several seemingly non-equivariant questions. In particular, we show that knot Floer homology can be used to detect exotic pairs of slice disks, recovering an example due to Hayden, and extend a result due to Miller and Powell regarding stabilization distance. Our formalism suggests a possible route towards establishing the non-commutativity of the equivariant concordance group.