论文标题

几何相交图中最大匹配的近似算法

Approximation Algorithms for Maximum Matchings in Geometric Intersection Graphs

论文作者

Har-Peled, Sariel, Yang, Everett

论文摘要

我们提出了$(1- \ varepsilon)$ - 在磁盘相交图中最大基数匹配的近似算法 - 所有这些都具有接近线性的运行时间。我们还提出了估计算法,该算法返回$(1 \ pm \ varepsilon)$ - 近似此类匹配项的近似 - 该算法在单位磁盘的线性时间内运行,而通用磁盘的$ O(N \ log n)$(只要密度相对小)即可。

We present a $(1- \varepsilon)$-approximation algorithms for maximum cardinality matchings in disk intersection graphs -- all with near linear running time. We also present estimation algorithm that returns $(1\pm \varepsilon)$-approximation to the size of such matchings -- this algorithms run in linear time for unit disks, and $O(n \log n)$ for general disks (as long as the density is relatively small).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源