论文标题
关于3D Navier的轴对称解决方案的局部规律性 - Stokes方程
Remarks on local regularity of axisymmetric solutions to the 3D Navier--Stokes equations
论文作者
论文摘要
在本说明中,研究了针对3D Navier的轴对称解决方案的新的局部规则标准 - Stokes方程。它有些超临界,意味着$γ= r u^θ$的上限:对于任何$ 0 <ττ<1 $,存在常数$ c> 0 $,$ c> 0 $,$$ |γ(r,x_ {3},t),t) \ frac {1} {4}。 $$
In this note, a new local regularity criteria for the axisymmetric solutions to the 3D Navier--Stokes equations is investigated. It is slightly supercritical and implies an upper bound for the oscillation of $Γ=r u^θ$: for any $0< τ<1$, there exists a constant $c>0$, $$ |Γ(r,x_{3},t)|\leq N e^{-c\, |\ln r|^τ},\ 0<r\leq \frac{1}{4}. $$