论文标题

在表面上的谐波透明扭曲产品

Harmonic-curvature warped products over surfaces

论文作者

Derdzinski, Andrzej, Piccione, Paolo

论文摘要

对于具有谐波曲率的翘曲产品,非恒定翘曲功能$ ϕ $,以及紧凑的二维基础$(m,h)$,我们建立了二分法:高斯曲率$ k $的度量$ g = ϕ^{-2} h $是恒定和负面的,或$ k $ $ k $ $ k $ k $ k $ k $ k $ k $ k. $ \ varepsilon $的纤维。在这两种情况下,光纤都必须是$ p> 1 $和$ \ varepsilon> 0 $的爱因斯坦歧管,而功能$ f = ϕ^{p/2} $满足yamabe-type的二阶微分方程,on $(m,g)$。我们证明,在大于$ 1 $的属的每个可定向的表面上都实现了这两种可能性,在后一种情况下(也发生在$ 2 $ -SPHERE和真实的投射平面上),所讨论的指标构成了许多独特的同种类型。

For warped products with harmonic curvature, nonconstant warping functions $ϕ$, and compact two-dimensional bases $(M,h)$, we establish a dichotomy: either the Gaussian curvature $K$ of the metric $g=ϕ^{-2}h$ is constant and negative, or $ϕ$ equals a specific elementary function of $K$, also depending on the dimension $p$ and Einstein constant $\varepsilon$ of the fibre. In both cases the fibre must be an Einstein manifold with $p>1$ and $\varepsilon>0$, while the function $f=ϕ^{p/2}$ satisfies a Yamabe-type second-order differential equation on $(M,g)$. We prove that both possibilities are realized on every closed orientable surface of genus greater than $1$, and in the latter case -- which also occurs on the $2$-sphere and real projective plane -- the metrics in question constitute uncountably many distinct homothety types.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源