论文标题
深度概率图匹配
Deep Probabilistic Graph Matching
论文作者
论文摘要
大多数以前基于学习的图形匹配算法都通过丢弃一个或多个匹配的约束并采用一个放松的分配求解器来获得次优点的对应关系来解决\ textit {二次分配问题}(qAP)。这种放松实际上可能会削弱原始的图形匹配问题,进而损害了匹配性能。在本文中,我们提出了一个基于深度学习的图形匹配框架,该框架适用于原始QAP,而不会损害匹配约束。特别是,我们设计了一个亲和力分配预测网络,以共同学习成对亲和力并估算节点分配,然后我们开发了一个受成对亲和力概率观点启发的可区分求解器。为了获得更好的匹配结果,概率求解器以迭代方式完善了估计的分配,以同时施加离散和一对一的匹配约束。提出的方法在三个经过盛产的基准测试(Pascal VOC,Willow对象和Spair-71K)上进行了评估,并且在所有基准测试基准上都优于所有先前的最先进的基准。
Most previous learning-based graph matching algorithms solve the \textit{quadratic assignment problem} (QAP) by dropping one or more of the matching constraints and adopting a relaxed assignment solver to obtain sub-optimal correspondences. Such relaxation may actually weaken the original graph matching problem, and in turn hurt the matching performance. In this paper we propose a deep learning-based graph matching framework that works for the original QAP without compromising on the matching constraints. In particular, we design an affinity-assignment prediction network to jointly learn the pairwise affinity and estimate the node assignments, and we then develop a differentiable solver inspired by the probabilistic perspective of the pairwise affinities. Aiming to obtain better matching results, the probabilistic solver refines the estimated assignments in an iterative manner to impose both discrete and one-to-one matching constraints. The proposed method is evaluated on three popularly tested benchmarks (Pascal VOC, Willow Object and SPair-71k), and it outperforms all previous state-of-the-arts on all benchmarks.