论文标题

风险有限的非线性机器人运动计划,并具有综合感知和控制

Risk Bounded Nonlinear Robot Motion Planning With Integrated Perception & Control

论文作者

Renganathan, Venkatraman, Safaoui, Sleiman, Kothari, Aadi, Gravell, Benjamin, Shames, Iman, Summers, Tyler

论文摘要

强大的自治堆栈需要紧密整合感知,运动计划和控制层,但是这些层通常不充分地纳入了固有的感知和预测不确定性,要么完全忽略它们,要么对高斯人做出可疑的假设。具有非线性动力学和复杂感应方式在不确定环境中运行的机器人需要更仔细地考虑到不确定性如何在堆栈层中传播。我们建议通过将感知和预测不确定性明确地纳入计划,以便减轻违反约束的风险,从而纳入感知,运动计划和控制。具体而言,我们使用基于非线性预测控制的转向定律,以及基于去相关方案的无气体滤波器进行状态和环境估计的基于去相关方案,以传播机器人状态和环境不确定性。随后,我们使用分配强大的风险限制来限制在存在这些不确定性的情况下的风险。最后,我们提出了一个分层的自主堆栈,该堆栈由基于非线性转向的分布稳健运动计划模块和参考轨迹跟踪模块组成。我们使用非线性机器人模型和城市驾驶模拟器进行的数值实验显示了我们提出的方法的有效性。

Robust autonomy stacks require tight integration of perception, motion planning, and control layers, but these layers often inadequately incorporate inherent perception and prediction uncertainties, either ignoring them altogether or making questionable assumptions of Gaussianity. Robots with nonlinear dynamics and complex sensing modalities operating in an uncertain environment demand more careful consideration of how uncertainties propagate across stack layers. We propose a framework to integrate perception, motion planning, and control by explicitly incorporating perception and prediction uncertainties into planning so that risks of constraint violation can be mitigated. Specifically, we use a nonlinear model predictive control based steering law coupled with a decorrelation scheme based Unscented Kalman Filter for state and environment estimation to propagate the robot state and environment uncertainties. Subsequently, we use distributionally robust risk constraints to limit the risk in the presence of these uncertainties. Finally, we present a layered autonomy stack consisting of a nonlinear steering-based distributionally robust motion planning module and a reference trajectory tracking module. Our numerical experiments with nonlinear robot models and an urban driving simulator show the effectiveness of our proposed approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源