论文标题

基于梯度的钻头编码噪声二进制备用横杆的优化

Gradient-based Bit Encoding Optimization for Noise-Robust Binary Memristive Crossbar

论文作者

Kim, Youngeun, Kim, Hyunsoo, Kim, Seijoon, Kim, Sang Joon, Panda, Priyadarshini

论文摘要

作为一种节能的深度学习硬件加速器,二进制备忘录横梁引起了极大的关注。尽管如此,由于横杆的类似性质,它们遭受了各种声音。为了克服此类局限性,大多数以前的作品都使用从横杆获得的噪声数据来训练权重参数。但是,这些方法是无效的,因为在大容量制造环境中很难收集噪声数据,在大容量的制造环境中,每个横杆都具有较大的设备/电路水平变化。此外,我们认为,即使这些方法在某种程度上提高了准确性,仍有改进的余地。本文通过操纵输入二进制位编码而不是训练有关噪声数据的网络的重量来探讨以更普遍的方式来减轻横杆噪声的新观点。我们首先在数学上表明,随着代表相同数量的信息时,噪声随着二进制位编码脉冲的数量的增加而降低。此外,我们提出了基于梯度的位编码优化(GBO),该优化优化了每一层的不同数量的脉冲,我们的深入分析是,每层层都具有不同级别的噪声灵敏度。提出的异质层编码方案以低计算成本实现了高噪声稳健性。我们对公共基准数据集的实验结果表明,在严重的噪声场景中,GBO将分类准确性提高了约5-40%。

Binary memristive crossbars have gained huge attention as an energy-efficient deep learning hardware accelerator. Nonetheless, they suffer from various noises due to the analog nature of the crossbars. To overcome such limitations, most previous works train weight parameters with noise data obtained from a crossbar. These methods are, however, ineffective because it is difficult to collect noise data in large-volume manufacturing environment where each crossbar has a large device/circuit level variation. Moreover, we argue that there is still room for improvement even though these methods somewhat improve accuracy. This paper explores a new perspective on mitigating crossbar noise in a more generalized way by manipulating input binary bit encoding rather than training the weight of networks with respect to noise data. We first mathematically show that the noise decreases as the number of binary bit encoding pulses increases when representing the same amount of information. In addition, we propose Gradient-based Bit Encoding Optimization (GBO) which optimizes a different number of pulses at each layer, based on our in-depth analysis that each layer has a different level of noise sensitivity. The proposed heterogeneous layer-wise bit encoding scheme achieves high noise robustness with low computational cost. Our experimental results on public benchmark datasets show that GBO improves the classification accuracy by ~5-40% in severe noise scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源