论文标题

生成和进化艺术中的复杂性和美学

Complexity and Aesthetics in Generative and Evolutionary Art

论文作者

McCormack, Jon, Gambardella, Camilo Cruz

论文摘要

在本文中,我们研究了它适用于生成和进化艺术和设计的复杂性概念。复杂性具有许多不同的纪律特定定义,例如物理系统中的复杂性(熵),信息复杂性算法测量和“复杂系统”的领域。我们将一系列不同的复杂性度量应用于三个不同的进化艺术数据集,并查看艺术家(在两个数据集的情况下)的复杂性与个人美学判断之间的相关性或生成3D形式的物理测量的复杂性。我们的结果表明,每个集合和度量的相关程度都不同,表明没有总体“更好”度量。但是,特定的措施在单个数据集上确实表现良好,表明仔细的选择可以增加使用此类措施的价值。然后,我们通过对复杂性和美学感知进行大规模调查来评估受众的复杂性度量的价值。我们通过讨论了直接措施在生成和进化艺术中的价值,从而加强了来自神经影像和心理学的最新发现,这些发现表明,除了判断对象的可测量特性之外,许多外部因素都为人类的美学判断提供了信息。

In this paper we examine the concept of complexity as it applies to generative and evolutionary art and design. Complexity has many different, discipline specific definitions, such as complexity in physical systems (entropy), algorithmic measures of information complexity and the field of "complex systems". We apply a series of different complexity measures to three different evolutionary art datasets and look at the correlations between complexity and individual aesthetic judgement by the artist (in the case of two datasets) or the physically measured complexity of generative 3D forms. Our results show that the degree of correlation is different for each set and measure, indicating that there is no overall "better" measure. However, specific measures do perform well on individual datasets, indicating that careful choice can increase the value of using such measures. We then assess the value of complexity measures for the audience by undertaking a large-scale survey on the perception of complexity and aesthetics. We conclude by discussing the value of direct measures in generative and evolutionary art, reinforcing recent findings from neuroimaging and psychology which suggest human aesthetic judgement is informed by many extrinsic factors beyond the measurable properties of the object being judged.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源