论文标题

Cross-SRN:具有交叉卷积的结构性超分辨率网络

Cross-SRN: Structure-Preserving Super-Resolution Network with Cross Convolution

论文作者

Liu, Yuqing, Jia, Qi, Fan, Xin, Wang, Shanshe, Ma, Siwei, Gao, Wen

论文摘要

将低分辨率(LR)图像恢复到具有正确和清晰的细节的超分辨率(SR)图像是一项挑战。现有的深度学习工作几乎忽略了图像的固有结构信息,这是SR结果视觉感知的重要作用。在本文中,我们设计了一个分层功能开发网络,以多尺度特征融合方式探测和保留结构信息。首先,我们建议对传统边缘检测器进行交叉卷积,以定位并表示边缘特征。然后,跨卷积块(CCB)的设计具有特征归一化,并关注注意力以考虑特征的固有相关性。最后,我们利用多尺度特征融合组(MFFG)嵌入了交叉卷积块,并在不同尺度的层次上发展结构特征的关系,从而调用称为Cross-SRN的轻质结构持有网络。实验结果表明,具有准确明确的结构细节的最先进方法,可以实现跨SRN的竞争性或出色的恢复性能。此外,我们设定了一个标准,可以选择具有丰富结构纹理的图像。所提出的跨SRN优于选定基准上的最新方法,该方法表明我们的网络在保存边缘方面具有重要优势。

It is challenging to restore low-resolution (LR) images to super-resolution (SR) images with correct and clear details. Existing deep learning works almost neglect the inherent structural information of images, which acts as an important role for visual perception of SR results. In this paper, we design a hierarchical feature exploitation network to probe and preserve structural information in a multi-scale feature fusion manner. First, we propose a cross convolution upon traditional edge detectors to localize and represent edge features. Then, cross convolution blocks (CCBs) are designed with feature normalization and channel attention to consider the inherent correlations of features. Finally, we leverage multi-scale feature fusion group (MFFG) to embed the cross convolution blocks and develop the relations of structural features in different scales hierarchically, invoking a lightweight structure-preserving network named as Cross-SRN. Experimental results demonstrate the Cross-SRN achieves competitive or superior restoration performances against the state-of-the-art methods with accurate and clear structural details. Moreover, we set a criterion to select images with rich structural textures. The proposed Cross-SRN outperforms the state-of-the-art methods on the selected benchmark, which demonstrates that our network has a significant advantage in preserving edges.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源