论文标题

确定性度量$ 1 $ -Median选择,很少查询

Deterministic metric $1$-median selection with very few queries

论文作者

Chang, Ching-Lueh

论文摘要

给定一个$ n $ - 点公制空间$(m,d)$,{\ sc metric $ 1 $ -Median}要求在m $最小化$ \ sum_ {x \ in m} \ in m} \,d(p,x)$中提供点$ p \。我们表明,对于每个可计算函数,$ f \ colon \ mathbb {z}^+\ to \ mathbb {z}^+$满足$ f(n)=ω(n)=ω(1)$,{\ sc metric $ 1 $ -Median}具有确定性的,$ O(n)$ - QUERY,$ - QUERY,$ o(n)$ o(n)$ o(n) 算法。以前,没有确定性的$ o(n)$ - 查询$ o(n)$ - 近似算法以{\ sc metric $ 1 $ -Median}而闻名。在负面方面,我们证明{\ sc metric $ 1 $ -Median}的每个确定性$ o(n)$ - 查询算法都不是$(δ\ log n)$ - 对于足够小的常数$δ> 0 $而言。我们还驳斥了确定性$ o(n)$ - 查询$ o(\ log n)$ - 近似算法的存在。

Given an $n$-point metric space $(M,d)$, {\sc metric $1$-median} asks for a point $p\in M$ minimizing $\sum_{x\in M}\,d(p,x)$. We show that for each computable function $f\colon \mathbb{Z}^+\to\mathbb{Z}^+$ satisfying $f(n)=ω(1)$, {\sc metric $1$-median} has a deterministic, $o(n)$-query, $o(f(n)\cdot\log n)$-approximation and nonadaptive algorithm. Previously, no deterministic $o(n)$-query $o(n)$-approximation algorithms are known for {\sc metric $1$-median}. On the negative side, we prove each deterministic $O(n)$-query algorithm for {\sc metric $1$-median} to be not $(δ\log n)$-approximate for a sufficiently small constant $δ>0$. We also refute the existence of deterministic $o(n)$-query $O(\log n)$-approximation algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源