论文标题

部分可观测时空混沌系统的无模型预测

An equivariant neural operator for developing nonlocal tensorial constitutive models

论文作者

Han, Jiequn, Zhou, Xu-Hui, Xiao, Heng

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Developing robust constitutive models is a fundamental and longstanding problem for accelerating the simulation of complicated physics. Machine learning provides promising tools to construct constitutive models based on various calibration data. In this work, we propose a neural operator to develop nonlocal constitutive models for tensorial quantities through a vector-cloud neural network with equivariance (VCNN-e). The VCNN-e respects all the invariance properties desired by constitutive models, faithfully reflects the region of influence in physics, and is applicable to different spatial resolutions. By design, the model guarantees that the predicted tensor is invariant to the frame translation and ordering (permutation) of the neighboring points. Furthermore, it is equivariant to the frame rotation, i.e., the output tensor co-rotates with the coordinate frame. We evaluate the VCNN-e by using it to emulate the Reynolds stress transport model for turbulent flows, which directly computes the Reynolds stress tensor to close the Reynolds-averaged Navier--Stokes (RANS) equations. The evaluation is performed in two situations: (1) emulating the Reynolds stress model through synthetic data generated from the Reynolds stress transport equations with closure models, and (2) predicting the Reynolds stress by learning from data generated from direct numerical simulations. Such a priori evaluations of the proposed network pave the way for developing and calibrating robust and nonlocal, non-equilibrium closure models for the RANS equations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源