论文标题

基于LSB的非盲目预测边缘自适应图像模拟

LSB Based Non Blind Predictive Edge Adaptive Image Steganography

论文作者

Chakraborty, Soumendu, Jalal, Anand Singh, Bhatnagar, Charul

论文摘要

图像隐化是在灰度或颜色图像中隐藏秘密信息的艺术。对任何最新图像隐肌的秘密消息的易于检测可能会破坏Stego系统。为了防止Stego系统的崩溃,数据嵌入了图像的选定区域中,从而降低了检测的概率。大多数现有的自适应图像隐志技术达到了低嵌入能力。在本文中,提出了高容量的预测边缘自适应图像模拟技术,其中使用改良的中间边缘检测器(MMED)预测器预测封面图像的选择性区域,以嵌入二进制有效载荷(数据)。用于嵌入有效载荷的封面图像是灰度图像。实验结果表明,所提出的方案以最小的失真水平和更高的安全水平实现了更好的嵌入能力。将提出的方案与现有的图像隐志方案进行了比较。结果表明,所提出的方案以较低的失真水平实现了更好的嵌入速率。

Image steganography is the art of hiding secret message in grayscale or color images. Easy detection of secret message for any state-of-art image steganography can break the stego system. To prevent the breakdown of the stego system data is embedded in the selected area of an image which reduces the probability of detection. Most of the existing adaptive image steganography techniques achieve low embedding capacity. In this paper a high capacity Predictive Edge Adaptive image steganography technique is proposed where selective area of cover image is predicted using Modified Median Edge Detector (MMED) predictor to embed the binary payload (data). The cover image used to embed the payload is a grayscale image. Experimental results show that the proposed scheme achieves better embedding capacity with minimum level of distortion and higher level of security. The proposed scheme is compared with the existing image steganography schemes. Results show that the proposed scheme achieves better embedding rate with lower level of distortion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源