论文标题

部分可观测时空混沌系统的无模型预测

Coherent structures in plane channel flow of dilute polymer solutions with vanishing inertia

论文作者

Morozov, Alexander

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

When subjected to sufficiently strong velocity gradients, solutions of long, flexible polymers exhibit flow instabilities and chaotic motion, often referred to as elastic turbulence. Its mechanism differs from the familiar, inertia-driven turbulence in Newtonian fluids, and is poorly understood. Here, we demonstrate that the dynamics of purely elastic pressure-driven channel flows of dilute polymer solutions are organised by exact coherent structures that take the form of two-dimensional travelling waves. Our results demonstrate that no linear instability is required to sustain such travelling wave solutions, and that their origin is purely elastic in nature. We show that the associated stress profiles are characterised by thin, filament-like arrangements of polymer stretch, which is sustained by a solitary pair of vortices. We discuss the implications of the travelling wave solutions for the transition to elastic turbulence in straight channels, and propose ways for their detection in experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源