论文标题
价值函数分解与分散多代理策略梯度中的潜在状态信息共享
Value Functions Factorization with Latent State Information Sharing in Decentralized Multi-Agent Policy Gradients
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Value function factorization via centralized training and decentralized execution is promising for solving cooperative multi-agent reinforcement tasks. One of the approaches in this area, QMIX, has become state-of-the-art and achieved the best performance on the StarCraft II micromanagement benchmark. However, the monotonic-mixing of per agent estimates in QMIX is known to restrict the joint action Q-values it can represent, as well as the insufficient global state information for single agent value function estimation, often resulting in suboptimality. To this end, we present LSF-SAC, a novel framework that features a variational inference-based information-sharing mechanism as extra state information to assist individual agents in the value function factorization. We demonstrate that such latent individual state information sharing can significantly expand the power of value function factorization, while fully decentralized execution can still be maintained in LSF-SAC through a soft-actor-critic design. We evaluate LSF-SAC on the StarCraft II micromanagement challenge and demonstrate that it outperforms several state-of-the-art methods in challenging collaborative tasks. We further set extensive ablation studies for locating the key factors accounting for its performance improvements. We believe that this new insight can lead to new local value estimation methods and variational deep learning algorithms. A demo video and code of implementation can be found at https://sites.google.com/view/sacmm.