论文标题

派生的Langlands VII:通用线性群体产品的PSH代数

Derived Langlands VII: The PSH Algebra of Products of General Linear Groups

论文作者

Snaith, Victor P

论文摘要

在本文中,我们在$ r _ {+}( - )$ r _ {+}( - )$组产品的$ r _ {+}( - )$组中放置了一个非常精致的PSH状结构。这不是我们想要的。首先,人们真的希望真正的大型PSH代数的一般线性群体的产品具有特征性零$ p $ adiC本地领域的条目。这可能会有技术困难。但是,具有特征性零$ p $ ad的本地字段中有条目的通用线性群体产品的$ r _ {+}( - )$小工具似乎对我们有用,可以通过各种减少来压缩开放子组和还原地图Modulo Modulo Modulo Modulo不同的Prime Powers。这些降低可以允许验证功能方程和分析组属性,这些属性表征了Riemann Zeta函数,并且大概是类似地表征了$ 2 $ - 可变量的L功能。

In this article we put a very elaborate PSH-like structure on the $R_{+}(-)$ groups of products of finite general linear groups. This is not the case we want. Firstly one would really want the actual big PSH algebra of products of general linear groups with entries in a characteristic zero $p$-adic local field. There may be technical difficulties with this. However the $R_{+}(-)$ gadget for products of general linear groups with entries in a characteristic zero $p$-adic local field seems to work for us by allowing various reduction to compact open subgroups and reduction maps modulo different prime powers from there. These reductions may allow the verification of functional equations and analytic groups properties which characterise the Riemann zeta function and presumably similarly characterise the $2$-variable L-functions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源