论文标题
RXN HyperGraph:化学反应表示的超晶光注意模型
Rxn Hypergraph: a Hypergraph Attention Model for Chemical Reaction Representation
论文作者
论文摘要
科学技术能够预测化学反应及其特性是至关重要的。为了实现此类技能,重要的是要开发良好的化学反应表现形式,或者可以自动从数据中自动学习此类表示形式的良好深度学习体系结构。目前尚无通用和广泛采用的方法来鲁棒代表化学反应。大多数现有方法都有一个或多个缺点,例如:(1)缺乏普遍性; (2)缺乏健壮性; (3)缺乏解释性;或(4)需要过多的手动预处理。在这里,我们利用基于图的分子结构的表示形式来开发和测试超射击注意神经网络方法,以立即解决反应表示和财产预测问题,从而减轻了上述缺点。我们使用三个独立的化学反应数据集在三个实验中评估了这一超图表。在所有实验中,基于超图的方法匹配或优于其他表示及其相应的化学反应模型,同时产生可解释的多层表示。
It is fundamental for science and technology to be able to predict chemical reactions and their properties. To achieve such skills, it is important to develop good representations of chemical reactions, or good deep learning architectures that can learn such representations automatically from the data. There is currently no universal and widely adopted method for robustly representing chemical reactions. Most existing methods suffer from one or more drawbacks, such as: (1) lacking universality; (2) lacking robustness; (3) lacking interpretability; or (4) requiring excessive manual pre-processing. Here we exploit graph-based representations of molecular structures to develop and test a hypergraph attention neural network approach to solve at once the reaction representation and property-prediction problems, alleviating the aforementioned drawbacks. We evaluate this hypergraph representation in three experiments using three independent data sets of chemical reactions. In all experiments, the hypergraph-based approach matches or outperforms other representations and their corresponding models of chemical reactions while yielding interpretable multi-level representations.