论文标题

纳米级显微镜中的AI可视化

AI visualization in Nanoscale Microscopy

论文作者

A, Rajagopal, V, Nirmala, J, Andrew, Vedamanickam., Arun Muthuraj

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Artificial Intelligence & Nanotechnology are promising areas for the future of humanity. While Deep Learning based Computer Vision has found applications in many fields from medicine to automotive, its application in nanotechnology can open doors for new scientific discoveries. Can we apply AI to explore objects that our eyes can't see such as nano scale sized objects? An AI platform to visualize nanoscale patterns learnt by a Deep Learning neural network can open new frontiers for nanotechnology. The objective of this paper is to develop a Deep Learning based visualization system on images of nanomaterials obtained by scanning electron microscope. This paper contributes an AI platform to enable any nanoscience researcher to use AI in visual exploration of nanoscale morphologies of nanomaterials. This AI is developed by a technique of visualizing intermediate activations of a Convolutional AutoEncoder. In this method, a nano scale specimen image is transformed into its feature representations by a Convolution Neural Network. The Convolutional AutoEncoder is trained on 100% SEM dataset, and then CNN visualization is applied. This AI generates various conceptual feature representations of the nanomaterial. While Deep Learning based image classification of SEM images are widely published in literature, there are not much publications that have visualized Deep neural networks of nanomaterials. There is a significant opportunity to gain insights from the learnings extracted by machine learning. This paper unlocks the potential of applying Deep Learning based Visualization on electron microscopy to offer AI extracted features and architectural patterns of various nanomaterials. This is a contribution in Explainable AI in nano scale objects. This paper contributes an open source AI with reproducible results at URL (https://sites.google.com/view/aifornanotechnology)

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源