论文标题
弯曲域上麦克斯韦变分问题的有限元素域近似
Finite-Element Domain Approximation for Maxwell Variational Problems on Curved Domains
论文作者
论文摘要
我们考虑了弯曲结构域上麦克斯韦方程的有限元方法中的域近似问题,即当仿射或多项式网格无法精确覆盖感兴趣的域时。在这种情况下,被迫通过由不精肉网格产生的一系列多面体结构域近似域。我们将这些近似值的质量推断出条件,以确保离散解决方案之间的误差速率(在近似域中)与原始域中的连续差异。
We consider the problem of domain approximation in finite element methods for Maxwell equations on curved domains, i.e., when affine or polynomial meshes fail to exactly cover the domain of interest. In such cases, one is forced to approximate the domain by a sequence of polyhedral domains arising from inexact meshes. We deduce conditions on the quality of these approximations that ensure rates of error convergence between discrete solutions -- in the approximate domains -- to the continuous one in the original domain.