论文标题

渐近锥形calabi-yau歧管的分类

Classification of asymptotically conical Calabi-Yau manifolds

论文作者

Conlon, Ronan J., Hein, Hans-Joachim

论文摘要

根据定义,riemannian锥$(c,g_c)$是扭曲的产品$ c = \ mathbb {r}^+ \ times l $,带公制$ g_c = dr^2 \ oplus r^2 g_l $,其中$(l,g_l)$是无边界的紧凑型riemann歧管。我们说,如果$ g_c $是ricci-flatkähler公制,并且如果$ c $允许$ g_c $ -parallel holomorthic卷表格;这相当于横截面$(l,g_l)$是Sasaki-Einstein歧管。在本文中,我们将所有平滑完整的Calabi-yau歧管渐近地分类与某些给定的calabi-yau锥体渐近,以无穷大的多项式速率。作为特殊情况,这包括克朗海默对无扭动理论的啤酒hyper-kähler的分类$ 4 $ - manifolds。

A Riemannian cone $(C, g_C)$ is by definition a warped product $C = \mathbb{R}^+ \times L$ with metric $g_C = dr^2 \oplus r^2 g_L$, where $(L,g_L)$ is a compact Riemannian manifold without boundary. We say that $C$ is a Calabi-Yau cone if $g_C$ is a Ricci-flat Kähler metric and if $C$ admits a $g_C$-parallel holomorphic volume form; this is equivalent to the cross-section $(L,g_L)$ being a Sasaki-Einstein manifold. In this paper, we give a complete classification of all smooth complete Calabi-Yau manifolds asymptotic to some given Calabi-Yau cone at a polynomial rate at infinity. As a special case, this includes a proof of Kronheimer's classification of ALE hyper-Kähler $4$-manifolds without twistor theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源