论文标题
在地球流体核心中,对流驱动的decadal decadal Zonal加速度
Convectively driven decadal zonal accelerations in Earth's fluid core
论文作者
论文摘要
根据磁场观测和日长度的变化,已经推断出与旋转轴的圆柱形表面的方位加速度相连。这些加速度具有数十年的典型时间表。但是,引起加速度的物理机制尚不清楚。缩放论点表明,在圆柱体表面上平均的领先顺序扭矩应来自洛伦兹力。由对流流动驱动的核心内部磁场中的衰减波动可能会迫使洛伦兹扭矩的decadal变化并产生纬向加速度。我们通过构建磁磁体注射的准地藻模型来检验这一假设,并以热驱动的流动扰动稳定的,施加的背景磁场。我们表明,当我们的模型中的AlfVén数与地球流体核心中的数字相似时,扭矩平衡中的时间波动以Lorentz扭矩为主,后者产生平均层状加速度。我们的模型既重现快速,自由的Alfvén波和慢速,强迫加速度,相对强度和相对时间尺度的比率类似于地球核心推断的比率。驱动随时间变化的洛伦兹扭矩的磁场的时间变化是由潜在的对流流产生的,剪切和横切了与对流涡流相关的时间尺度上的磁场。我们的结果支持以下假设:磁场深处内部的磁场的时间变化驱动了观察到的圆柱形表面的decadal卵形加速度通过Lorentz扭矩。
Azimuthal accelerations of cylindrical surfaces co-axial with the rotation axis have been inferred to exist in Earth's fluid core on the basis of magnetic field observations and changes in the length-of-day. These accelerations have a typical timescale of decades. However, the physical mechanism causing the accelerations is not well understood. Scaling arguments suggest that the leading order torque averaged over cylindrical surfaces should arise from the Lorentz force. Decadal fluctuations in the magnetic field inside the core, driven by convective flows, could then force decadal changes in the Lorentz torque and generate zonal accelerations. We test this hypothesis by constructing a quasi-geostrophic model of magnetoconvection, with thermally-driven flows perturbing a steady, imposed background magnetic field. We show that when the Alfvén number in our model is similar to that in Earth's fluid core, temporal fluctuations in the torque balance are dominated by the Lorentz torque, with the latter generating mean zonal accelerations. Our model reproduces both fast, free Alfvén waves and slow, forced accelerations, with ratios of relative strength and relative timescale similar to those inferred for the Earth's core. The temporal changes in the magnetic field which drive the time-varying Lorentz torque are produced by the underlying convective flows, shearing and advecting the magnetic field on a timescale associated with convective eddies. Our results support the hypothesis that temporal changes in the magnetic field deep inside Earth's fluid core drive the observed decadal zonal accelerations of cylindrical surfaces through the Lorentz torque.