论文标题

重新访问PGD攻击,以进行大规模非线性系统和基于感知控制的稳定性分析

Revisiting PGD Attacks for Stability Analysis of Large-Scale Nonlinear Systems and Perception-Based Control

论文作者

Havens, Aaron, Keivan, Darioush, Seiler, Peter, Dullerud, Geir, Hu, Bin

论文摘要

许多现有的吸引区域(ROA)分析工具在通过大规模神经网络(NN)策略和/或高维感应方式(例如相机)解决反馈系统时很难解决反馈系统。在本文中,我们定制在对抗学习社区中开发的预计梯度下降(PGD)攻击方法,作为大规模非线性系统和基于端到端感知的控制的通用ROA分析工具。我们表明,可以将ROA分析近似为受约束的最大化问题,其目标是找到最坏的初始条件,该条件最大程度地转移了终端状态。然后,我们提出了两种基于PGD的迭代方法,可用于解决所得约束的最大化问题。我们的分析不是基于Lyapunov理论,因此需要最少的问题结构信息。在基于模型的设置中,我们表明可以使用后传播有效地执行PGD更新。在无模型设置(与基于感知的控制的ROA分析更相关)中,我们提出了一个有限差异PGD估计值,该估计值是一般的,仅需要一个黑框模拟器来生成给定任何初始状态的闭环系统的轨迹。我们在具有大规模NN策略和高维图像观测值的几个数值示例上证明了分析工具的可扩展性和通用性。我们认为,我们提出的分析是进一步理解大型非线性系统和基于感知的控制的闭环稳定性的有意义的第一步。

Many existing region-of-attraction (ROA) analysis tools find difficulty in addressing feedback systems with large-scale neural network (NN) policies and/or high-dimensional sensing modalities such as cameras. In this paper, we tailor the projected gradient descent (PGD) attack method developed in the adversarial learning community as a general-purpose ROA analysis tool for large-scale nonlinear systems and end-to-end perception-based control. We show that the ROA analysis can be approximated as a constrained maximization problem whose goal is to find the worst-case initial condition which shifts the terminal state the most. Then we present two PGD-based iterative methods which can be used to solve the resultant constrained maximization problem. Our analysis is not based on Lyapunov theory, and hence requires minimum information of the problem structures. In the model-based setting, we show that the PGD updates can be efficiently performed using back-propagation. In the model-free setting (which is more relevant to ROA analysis of perception-based control), we propose a finite-difference PGD estimate which is general and only requires a black-box simulator for generating the trajectories of the closed-loop system given any initial state. We demonstrate the scalability and generality of our analysis tool on several numerical examples with large-scale NN policies and high-dimensional image observations. We believe that our proposed analysis serves as a meaningful initial step toward further understanding of closed-loop stability of large-scale nonlinear systems and perception-based control.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源