论文标题
纳什平衡的概率约束的相干性
Coherence of probabilistic constraints on Nash equilibria
论文作者
论文摘要
可观察到的游戏是达到许多Nash Equilibria的游戏情况。在游戏的实例启动之前,一个外部观察者不知道先验,即将发生的动作的确切概况?因此,他将主观概率分配给玩家的行为。但是,并非所有概率分配都与给定的游戏一致。我们研究了确定一组给定的概率约束是否由观察者分配给给定游戏的一组概率约束是连贯的,我们称之为平衡或pce-colerence的概率约束的连贯性。当仅考虑纯纳什平衡时,我们显示了有关算法和复杂性的几个结果。在这种情况下,我们还研究了对保持连贯性的作用的最大和最小概率约束的计算。最后,当允许混合纳什平衡时,我们研究了这些问题。
Observable games are game situations that reach one of possibly many Nash equilibria. Before an instance of the game starts, an external observer does not know, a priori, what is the exact profile of actions that will occur; thus, he assigns subjective probabilities to players' actions. However, not all probabilistic assignments are coherent with a given game. We study the decision problem of determining if a given set of probabilistic constraints assigned a priori by the observer to a given game is coherent, which we call the Coherence of Probabilistic Constraints on Equilibria, or PCE-Coherence. We show several results concerning algorithms and complexity for PCE-Coherence when only pure Nash equilibria are considered. In this context, we also study the computation of maximal and minimal probabilistic constraints on actions that preserves coherence. Finally, we study these problems when mixed Nash equilibria are allowed.