论文标题
$ f(q)$重力中的充电和非交通性几何形状的可遍历虫洞
Traversable wormholes with charge and non-commutative geometry in the $f(Q)$ gravity
论文作者
论文摘要
我们考虑了修改的对称远程重力(STG),其中非金属标量$ q $的任意功能给出了重力lagangian,以研究静态和球形对称的可遍历可遍历的蠕虫孔溶液,并具有非交通性背景几何形状。虫洞喉咙处的物质源被认为是各向异性的,红移功能具有恒定值(因此,我们的虫洞溶液是非潮汐的)。我们研究了$ f(q)$ stg模型的两种功能形式所获得的场方程,例如线性$ f(q)=αq+β$和非线性$ f(q)= q+mq^n $模型下的高斯和洛伦兹分布。我们的分析仅针对线性STG模型发现了确切的虫洞溶液。同样,对于非线性模型,我们直接从修改的爱因斯坦磁场方程(EFES)中得出了数值合适的虫洞形状函数。此外,我们还通过无效,占主导地位和强大的能量条件探测了这些模型,相对于自由修改的重力(MOG)参数$α$,$β$,$ m $和$ n $。我们还使用了Tolman-Oppenheimer-Vokloff(TOV)方程来研究虫孔各向异性物质在考虑的MOG中的稳定性。最后,我们绘制状态方程。
We consider modified symmetric teleparallel gravity (STG), in which gravitational Lagrangian is given by the arbitrary function of non-metricity scalar $Q$ to study static and spherically symmetric charged traversable wormhole solutions with non-commutative background geometry. The matter source at the wormhole throat is acknowledged to be anisotropic, and the redshift function has a constant value (thus, our wormhole solution is non-tidal). We study the obtained field equations with the two functional forms of $f(Q)$ STG models, such as linear $f(Q)=αQ+β$ and non-linear $f(Q)=Q+mQ^n$ models under Gaussian and Lorentzian distributions. Our analysis found the exact wormhole solutions for the linear STG model only. Also, for the non-linear model, we derived numerically suitable forms of wormhole shape functions directly from the modified Einstein Field Equations (EFEs). Besides, we probed these models via Null, Dominant, and Strong energy conditions with respect to free Modified gravity (MOG) parameters $α$, $β$, $m$, and $n$. We also used Tolman-Oppenheimer-Vokloff (TOV) equation to investigate the stability of wormhole anisotropic matter in considered MOG. Finally, we plot the equation of state.