论文标题

PowerGraph:使用神经网络和主要组件来确定多元统计功率权衡

PowerGraph: Using neural networks and principal components to determine multivariate statistical power trade-offs

论文作者

Mulay, Ajinkya K, Lane, Sean, Hennes, Erin

论文摘要

具有多个模型参数的研究的统计功率估计本质上是一个多元问题。单个感兴趣的参数的功率不能单一估计,因为相对于一个参数所解释的相关性和差异将影响另一个参数的功率,所有通常的单变量考虑因素均等。在这种情况下,尤其是对于具有许多参数的模型,明确的解决方案是不切实际的或无法解决的,使研究人员可以使用现有的模拟功率方法。但是,模型参数向量的点估计值不确定,并且不准确的影响尚不清楚。在这种情况下,建议对灵敏度分析进行模拟,以使可能可观察到的参数向量的多种组合模拟以了解功率权衡。这种方法的一个限制是,对于社会科学家估计的模型,产生足够的灵敏度组合以准确地绘制功能权衡功能在计算上是昂贵的。本文探讨了在不同模型参数组合上研究的统计能力的有效估计和图形。我们提出了一种简单且可推广的机器学习启发的解决方案,以将计算成本降低到不到蛮力方法的不到10%,同时提供了90%以上的F1分数。我们进一步激发了转移学习在各种分布之间的学习能力歧管中的影响。

Statistical power estimation for studies with multiple model parameters is inherently a multivariate problem. Power for individual parameters of interest cannot be reliably estimated univariately since correlation and variance explained relative to one parameter will impact the power for another parameter, all usual univariate considerations being equal. Explicit solutions in such cases, especially for models with many parameters, are either impractical or impossible to solve, leaving researchers to the prevailing method of simulating power. However, the point estimates for a vector of model parameters are uncertain, and the impact of inaccuracy is unknown. In such cases, sensitivity analysis is recommended such that multiple combinations of possible observable parameter vectors are simulated to understand power trade-offs. A limitation to this approach is that it is computationally expensive to generate sufficient sensitivity combinations to accurately map the power trade-off function in increasingly high-dimensional spaces for the models that social scientists estimate. This paper explores the efficient estimation and graphing of statistical power for a study over varying model parameter combinations. We propose a simple and generalizable machine learning inspired solution to cut the computational cost to less than 10% of the brute force method while providing F1 scores above 90%. We further motivate the impact of transfer learning in learning power manifolds across varying distributions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源