论文标题
五个低质量星系中的多种电离源和受干扰的外推气管运动学
The multifarious ionization sources and disturbed kinematics of extraplanar gas in five low-mass galaxies
论文作者
论文摘要
我们研究了外部弥漫性离子气体(EDIG)的起源及其在附近的五个(17-46 MPC)低质量($ 10^9 \ text { - } 10^{10} $ $ $ M _ {\ odot} $ _ {\ odot} $ 157-157-49,ESO 157-49, IC 217和IC 1553。我们获得了多个单位光谱探索器(MUSE)的积分田间光谱和深窄带H $α$成像。为了研究平面恒星形成与EDIG之间的联系,我们对窄带H $α$成像进行光度分析。我们测量$ h_ {z \ text {edig}} = 0.59 \ text { - } 1.39 $ kpc的EDIG比例高度的高度,并找到它们与特定的星形形成率之间的正相关。在所有星系中,我们还发现超球与平面径向H $α$轮廓之间存在很强的相关性。使用我们的缪斯数据,我们通过运动学研究了EDIG的起源。我们在中平面上方的离子气体旋转速度滞后,值在10到27 km s $^{ - 1} $ kpc $^{ - 1} $之间。虽然我们确实发现了ESO 157-49,IC 217和IC 1553中电离气体的积聚起源的提示,但总体而言,我们星系的电离气体运动学与稳定的星系模型或任何简单的星系模型不匹配,或任何简单的增生模型或气体内部。我们还构建了标准的诊断图和发射线图(ew(h $α$),[nii]/h $α$,[sii] // h $α$,[oiii]/h $β$),并找到与混合的ob ob star and Comper ob star and Hot ob star and Hot ob star and Hot obs ob star and Hot Mags obs Evolved Stars(holmes)Inionisiation and Might ob obsock and Mighock and ob-shockiatization。我们的结果表明,OB恒星是EDIG离子化的主要驱动力,而Holmes和Shocks均可在很大程度上有助于EDIG的电离。尽管我们的星系相似的结构和质量,但我们发现了电离机制的复合形象和EDIG的众多起源。
We investigate the origin of the extraplanar diffuse ionized gas (eDIG) and its predominant ionization mechanisms in five nearby (17-46 Mpc) low-mass ($10^9\text{-}10^{10}$ $M_{\odot}$) edge-on disk galaxies: ESO 157-49, ESO 469-15, ESO 544-27, IC 217, and IC 1553. We acquired Multi Unit Spectroscopic Explorer (MUSE) integral field spectroscopy and deep narrowband H$α$ imaging of our sample galaxies. To investigate the connection between in-plane star formation and eDIG, we perform a photometric analysis of our narrowband H$α$ imaging. We measure eDIG scale heights of $h_{z\text{eDIG}} = 0.59 \text{-} 1.39$ kpc and find a positive correlation between them and specific star formation rates. In all galaxies, we also find a strong correlation between extraplanar and midplane radial H$α$ profiles. Using our MUSE data, we investigate the origin of eDIG via kinematics. We find ionized gas rotation velocity lags above the midplane with values between 10 and 27 km s$^{-1}$ kpc$^{-1}$. While we do find hints of an accretion origin for the ionized gas in ESO 157-49, IC 217, and IC 1553, overall the ionized gas kinematics of our galaxies do not match a steady galaxy model or any simplistic model of accretion or internal origin for the gas. We also construct standard diagnostic diagrams and emission-line maps (EW(H$α$), [NII]/H$α$, [SII]//H$α$, [OIII]/H$β$) and find regions consistent with mixed OB star and hot low-mass evolved stars (HOLMES) ionization, and mixed OB-shock ionization. Our results suggest that OB stars are the primary driver of eDIG ionization, while both HOLMES and shocks may locally contribute to the ionization of eDIG to a significant degree. Despite our galaxies' similar structures and masses, we find a surprisingly composite image of ionization mechanisms and a multifarious origin for the eDIG.