论文标题
从理论上测量以低复杂性混合子班
Measure-Theoretically Mixing Subshifts with Low Complexity
论文作者
论文摘要
我们介绍了一类排名一的转换,我们称其为极高的楼梯变换。我们证明它们是从理论上进行测量的,对于任何$ f:\ mathbb {n} \ to \ mathbb {n} $,带有$ f(n)/n $增加,$ \ sum 1/f(n)<\ infty $,这是一个具有非常高度高的楼梯,具有高度高高的楼梯,具有复杂性$ p(n)= o(n)= o(n)= o(n)= o(n)= o(n)= o(n)$(n))。这提高了以前最低的混合缩影的复杂性,从而解决了Ferenczi的猜想。
We introduce a class of rank-one transformations, which we call extremely elevated staircase transformations. We prove that they are measure-theoretically mixing and, for any $f : \mathbb{N} \to \mathbb{N}$ with $f(n)/n$ increasing and $\sum 1/f(n) < \infty$, that there exists an extremely elevated staircase with word complexity $p(n) = o(f(n))$. This improves the previously lowest known complexity for mixing subshifts, resolving a conjecture of Ferenczi.