论文标题

通过控制深网幻觉的控制图像

Image Denoising with Control over Deep Network Hallucination

论文作者

Liang, Qiyuan, Cassayre, Florian, Owsianko, Haley, Helou, Majed El, Süsstrunk, Sabine

论文摘要

深层图像DeNoiser取得了最新的结果,但具有隐藏的成本。正如最近的文献所见,这些深层网络能够过度拟合其培训分布,从而导致幻觉不准确地添加到输出中,并概括为变化的数据。为了更好地控制和解释性,我们提出了一个利用Denoising网络的新型框架。我们称其为基于置信度的图像Denoising(CCID)。在此框架中,我们利用深层denoising网络的输出以及与可靠过滤器的图像一起利用的图像。这样的过滤器可以是一个简单的卷积内核,它不会冒着添加幻觉信息的风险。我们建议将两个组件与频域方法融合,以考虑深度网络输出的可靠性。使用我们的框架,用户可以控制频域中两个组件的融合。我们还提供了一个用户友好的地图,在空间上估算了对可能包含网络幻觉的输出的信心。结果表明,我们的CCID不仅提供了更多的可解释性和控制力,而且甚至可以胜过Deep DeNoiser和可靠过滤器的定量性能,尤其是当测试数据与培训数据差异时。

Deep image denoisers achieve state-of-the-art results but with a hidden cost. As witnessed in recent literature, these deep networks are capable of overfitting their training distributions, causing inaccurate hallucinations to be added to the output and generalizing poorly to varying data. For better control and interpretability over a deep denoiser, we propose a novel framework exploiting a denoising network. We call it controllable confidence-based image denoising (CCID). In this framework, we exploit the outputs of a deep denoising network alongside an image convolved with a reliable filter. Such a filter can be a simple convolution kernel which does not risk adding hallucinated information. We propose to fuse the two components with a frequency-domain approach that takes into account the reliability of the deep network outputs. With our framework, the user can control the fusion of the two components in the frequency domain. We also provide a user-friendly map estimating spatially the confidence in the output that potentially contains network hallucination. Results show that our CCID not only provides more interpretability and control, but can even outperform both the quantitative performance of the deep denoiser and that of the reliable filter, especially when the test data diverge from the training data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源