论文标题

自动合奏预测和解释的深度学习和线性编程

Deep Learning and Linear Programming for Automated Ensemble Forecasting and Interpretation

论文作者

Ankile, Lars Lien, Krange, Kjartan

论文摘要

本文提出了一种合奏的预测方法,该方法通过减少特征和模型选择假设(称为甜甜圈(不要利用人类信念)),在M4竞争数据集上显示出很强的结果。我们的假设降低主要由自动生成的特征和整体的更多样化的模型池组成,其表现明显优于Montero-Manso等人的统计基于统计,基于特征的集合方法Fforma。 (2020)。我们还使用较长的短期内存网络(LSTM)自动编码器调查了特征提取,并发现此类功能包含标准统计特征方法未捕获的关键信息。集合加权模型使用LSTM和统计功能来准确组合模型。对特征重要性和相互作用的分析表明,仅统计特征比统计特征具有略有优势。聚类分析表明,必需的LSTM特征与大多数统计特征不同。我们还发现,加权模型学会使用新模型来增加加权模型的解决方案空间,从而解释了准确性提高的一部分。此外,我们对合奏的最佳组合和选择进行了正式的事前因素分析,并通过对M4数据集的线性优化来量化差异。我们的发现表明,仅趋势和季节性等经典统计时间序列特征,并不能捕获所有相关信息以预测时间序列。相反,我们的新型LSTM功能比单独的统计功能具有更大的预测能力,但是将这两个功能集结合起来证明是最好的。

This paper presents an ensemble forecasting method that shows strong results on the M4 Competition dataset by decreasing feature and model selection assumptions, termed DONUT (DO Not UTilize human beliefs). Our assumption reductions, primarily consisting of auto-generated features and a more diverse model pool for the ensemble, significantly outperform the statistical, feature-based ensemble method FFORMA by Montero-Manso et al. (2020). We also investigate feature extraction with a Long Short-term Memory Network (LSTM) Autoencoder and find that such features contain crucial information not captured by standard statistical feature approaches. The ensemble weighting model uses LSTM and statistical features to combine the models accurately. The analysis of feature importance and interaction shows a slight superiority for LSTM features over the statistical ones alone. Clustering analysis shows that essential LSTM features differ from most statistical features and each other. We also find that increasing the solution space of the weighting model by augmenting the ensemble with new models is something the weighting model learns to use, thus explaining part of the accuracy gains. Moreover, we present a formal ex-post-facto analysis of an optimal combination and selection for ensembles, quantifying differences through linear optimization on the M4 dataset. Our findings indicate that classical statistical time series features, such as trend and seasonality, alone do not capture all relevant information for forecasting a time series. On the contrary, our novel LSTM features contain significantly more predictive power than the statistical ones alone, but combining the two feature sets proved the best in practice.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源