论文标题

电化学驱动的绝缘子 - 金属过渡中的离子液门控抗铁磁莫特构成NIS $ _2 $单晶

Electrochemically-driven insulator-metal transition in ionic-liquid-gated antiferromagnetic Mott-insulating NiS$_2$ single crystals

论文作者

Hameed, Sajna, Voigt, Bryan, Dewey, John, Moore, William, Pelc, Damjan, Das, Bhaskar, El-Khatib, Sami, Garcia-Barriocanal, Javier, Luo, Bing, Seaton, Nick, Yu, Guichuan, Leighton, Chris, Greven, Martin

论文摘要

由黄铁矿结构cus $ _2 $中存在超导性的动机,我们探索了离子 - 液体门控诱导的超导性超导性的可能性,近端抗铁磁性mott mott绝缘子nis $ _2 $。从二维绝缘态到三维金属状态的明显的门控诱导的过渡在单晶表面的正栅极偏置处观察到。但是,没有观察到超导性的证据,降低到最低测量温度为0.45 K。基于传输,能量X射线光谱,X射线光电子光谱,原子力显微镜和其他技术,我们推断出一种电化学控件机制,涉及S:Ni比(超过数百个NM)的大幅下降,这既是非旋转和微不足道的,又是非差异。这与黄铁矿FES $ _2 $中的可逆,挥发性,表面限制,静电栅极效应形成鲜明对比。我们将NIS $ _2 $和FES $ _2 $的电化学和静电门控反应的这种严重差异归因于NIS $ _2 $的更大S扩散系数,类似于在电解氧化物中观察到的不同行为,具有不同的O-Vaccancy膨胀率。另一方面,门控不可逆性与缺乏大气相关。这与更好理解的氧化物案例相反,氧化物的情况是大气中的电解h $ _2 $ o提供了O储层。因此,这项对NIS $ _2 $的研究为功能材料中的电解质门控机制提供了新的见解,该机制以前未开发的极限。

Motivated by the existence of superconductivity in pyrite-structure CuS$_2$, we explore the possibility of ionic-liquid-gating-induced superconductivity in the proximal antiferromagnetic Mott insulator NiS$_2$. A clear gating-induced transition from a two-dimensional insulating state to a three-dimensional metallic state is observed at positive gate bias on single crystal surfaces. No evidence for superconductivity is observed down to the lowest measured temperature of 0.45 K, however. Based on transport, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, atomic force microscopy, and other techniques, we deduce an electrochemical gating mechanism involving a substantial decrease in the S:Ni ratio (over hundreds of nm), which is both non-volatile and irreversible. This is in striking contrast to the reversible, volatile, surface-limited, electrostatic gate effect in pyrite FeS$_2$. We attribute this stark difference in electrochemical vs. electrostatic gating response in NiS$_2$ and FeS$_2$ to the much larger S diffusion coefficient in NiS$_2$, analogous to the different behaviors observed among electrolyte-gated oxides with differing O-vacancy diffusivities. The gating irreversibility, on the other hand, is associated with the lack of atmospheric S; this is in contrast to the better understood oxide case, where electrolysis of atmospheric H$_2$O provides an O reservoir. This study of NiS$_2$ thus provides new insight into electrolyte gating mechanisms in functional materials, in a previously unexplored limit.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源