论文标题
径向最大算子的端点估计和最优性在径向函数上
Endpoint estimates and optimality for the generalized spherical maximal operator on radial functions
论文作者
论文摘要
我们发现,与径向函数上的广义球形平均rad变换相关的最大算子的鲜明条件$ m^{\ a,\ b} _t $,以在功率加权的lebesgue空间上进行界定。此外,我们还根据最佳功率加权弱和受限弱型估计值获得相应的端点结果。
We find sharp conditions for the maximal operator associated with generalized spherical mean Radon transform on radial functions $M^{\a,\b}_t$ to be bounded on power weighted Lebesgue spaces. Moreover, we also obtain the corresponding endpoint results in terms of optimal power weighted weak and restricted weak type estimates.