论文标题
在凸浓度设置中分解的浓度的锐度边界
Sharp Bounds for the Concentration of the Resolvent in Convex Concentration Settings
论文作者
论文摘要
考虑随机矩阵$ x \ in \ mathcal m_ {p,n} $,独立列满足了从著名的talagrand发出的凸浓度属性的独立列,我们表达了分辨率$ q =(i_p- \ frac {1}} {n} xx xx xx ^t)的线性浓度核标准的直径。一般证明依靠分解的分解为$ x $的一系列权力。
Considering random matrix $X \in \mathcal M_{p,n}$ with independent columns satisfying the convex concentration properties issued from a famous theorem of Talagrand, we express the linear concentration of the resolvent $Q = (I_p - \frac{1}{n}XX^T) ^{-1}$ around a classical deterministic equivalent with a good observable diameter for the nuclear norm. The general proof relies on a decomposition of the resolvent as a series of powers of $X$.