论文标题

了解公众对使用羟基氯喹进行COVID-19通过社交媒体进行治疗的舆论

Understanding Public Opinion on Using Hydroxychloroquine for COVID-19 Treatment via Social Media

论文作者

Do, Thuy T., Nguyen, Du, Le, Anh, Nguyen, Anh, Nguyen, Dong, Hoang, Nga, Le, Uyen, Tran, Tuan

论文摘要

羟氯喹(HCQ)用于预防或治疗由蚊子叮咬引起的疟疾。最近,已建议该药物治疗Covid-19,但这并未得到科学证据的支持。有关药物疗效的信息已经淹没了社交网络,通过扭曲他们对药物疗效的看法对社区构成了潜在的威胁。本文通过分析推文的反应模式和情感来研究社交网络使用者对使用HCQ进行COVID-19处理的建议的反应。我们从2月至2020年12月收集了164,016条推文,并使用文本挖掘方法来识别社会反应模式和意见随着时间的变化。我们的描述性分析确定了用户反应模式与HCQ和COVID-19治疗的发展紧密相关的用户反应模式的不规则性。这项研究将推文和Google搜索频率联系起来,以揭示当地社区对HCQ在不同州跨不同州使用COVID-19治疗的观点。此外,我们的推文情感分析表明,关于使用HCQ进行COVID-19治疗的建议,公众舆论随着时间的推移发生了很大变化。数据表明,早期的支持很高,但10月份的支持大大下降。最后,使用人类的4,850条推文的手动分类作为我们的基准,我们的情感分析表明,Google Cloud自然语言算法在分类推文时,尤其是在Sarcastic Tweet群体中,在分类推文方面表现出了意识到的词典和情感推理。

Hydroxychloroquine (HCQ) is used to prevent or treat malaria caused by mosquito bites. Recently, the drug has been suggested to treat COVID-19, but that has not been supported by scientific evidence. The information regarding the drug efficacy has flooded social networks, posting potential threats to the community by perverting their perceptions of the drug efficacy. This paper studies the reactions of social network users on the recommendation of using HCQ for COVID-19 treatment by analyzing the reaction patterns and sentiment of the tweets. We collected 164,016 tweets from February to December 2020 and used a text mining approach to identify social reaction patterns and opinion change over time. Our descriptive analysis identified an irregularity of the users' reaction patterns associated tightly with the social and news feeds on the development of HCQ and COVID-19 treatment. The study linked the tweets and Google search frequencies to reveal the viewpoints of local communities on the use of HCQ for COVID-19 treatment across different states. Further, our tweet sentiment analysis reveals that public opinion changed significantly over time regarding the recommendation of using HCQ for COVID-19 treatment. The data showed that high support in the early dates but it significantly declined in October. Finally, using the manual classification of 4,850 tweets by humans as our benchmark, our sentiment analysis showed that the Google Cloud Natural Language algorithm outperformed the Valence Aware Dictionary and sEntiment Reasoner in classifying tweets, especially in the sarcastic tweet group.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源