论文标题

无限尺寸空间之间运算符的深度非参数估计

Deep Nonparametric Estimation of Operators between Infinite Dimensional Spaces

论文作者

Liu, Hao, Yang, Haizhao, Chen, Minshuo, Zhao, Tuo, Liao, Wenjing

论文摘要

无限维空间之间的学习操作员是一项重要的学习任务,在机器学习,成像科学,数学建模和模拟等广泛应用中产生。本文研究了使用深神经网络对Lipschitz运营商的非参数估计。在正确选择的网络类别上,非反应性上限是为经验风险最小化器的概括误差而得出的。假设目标操作员表现出低维结构,我们的误差界限会随着训练样本量的增加而衰减,取决于我们估计中的内在维度的有吸引力的快速速率。我们的假设涵盖了实际应用中的大多数方案,我们的结果通过利用操作员估计中数据的低维结构来提高快速率。我们还研究了网络结构(例如网络宽度,深度和稀疏性)对神经网络估计器的概括误差的影响,并提出了有关网络结构选择的一般建议,以定量地最大程度地提高学习效率。

Learning operators between infinitely dimensional spaces is an important learning task arising in wide applications in machine learning, imaging science, mathematical modeling and simulations, etc. This paper studies the nonparametric estimation of Lipschitz operators using deep neural networks. Non-asymptotic upper bounds are derived for the generalization error of the empirical risk minimizer over a properly chosen network class. Under the assumption that the target operator exhibits a low dimensional structure, our error bounds decay as the training sample size increases, with an attractive fast rate depending on the intrinsic dimension in our estimation. Our assumptions cover most scenarios in real applications and our results give rise to fast rates by exploiting low dimensional structures of data in operator estimation. We also investigate the influence of network structures (e.g., network width, depth, and sparsity) on the generalization error of the neural network estimator and propose a general suggestion on the choice of network structures to maximize the learning efficiency quantitatively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源