论文标题
尖端复发的膨胀同构的结构
The structure of pointwise recurrent expansive homeomorphisms
论文作者
论文摘要
令$ x $成为一个紧凑的公制空间,让$ f:x \ rightarrow x $成为$ x $的同构。我们表明,如果$ f $既是重复的反复和膨胀,则动力学系统$(x,f)$在拓扑结合到某些符号系统的亚缩影。此外,如果$ f $呈呈呈正面反复发作,那么子迁移是半档的;给出反例以表明积极复发的必要性以确保半含量。
Let $X$ be a compact metric space and let $f:X\rightarrow X$ be a homeomorphism on $X$. We show that if $f$ is both pointwise recurrent and expansive, then the dynamical system $(X, f)$ is topologically conjugate to a subshift of some symbolic system. Moreover, if $f$ is pointwise positively recurrent, then the subshift is semisimple; a counterexample is given to show the necessity of positive recurrence to ensure the semisimilicity.