论文标题
在熵岩浆中的表面链接上不变的图形图
On invariants for surface-links in entropic magmas via marked graph diagrams
论文作者
论文摘要
M. Niebrzydowski和J. H. Przytycki定义了Kauffman支架岩浆,并在3个空间中构建了框架链路的不变P。不变性与考夫曼支架多项式密切相关。归一化的支架多项式是通过不确定的繁殖从考夫曼支架多项式获得的,它是链接的环境同位素不变。在本文中,我们通过使用从框架链接到考夫曼支架岩浆的框架链接的地图来重新制定乘法,以使$ p $对于3个空间的链接不变。我们定义了Kauffman支架岩浆的概括,该岩浆称为标有Kauffman支架岩浆。我们发现在吉川移动下的条件是不变的,除了第一个,并使用从可允许的标记图表图到标记的Kauffman支架岩浆中使用的地图,以获取4个空间中表面链接的不变性。
M. Niebrzydowski and J. H. Przytycki defined a Kauffman bracket magma and constructed the invariant P of framed links in 3-space. The invariant is closely related to the Kauffman bracket polynomial. The normalized bracket polynomial is obtained from the Kauffman bracket polynomial by the multiplication of indeterminate and it is an ambient isotopy invariant for links. In this paper, we reformulate the multiplication by using a map from the set of framed links to a Kauffman bracket magma in order that $P$ is invariant for links in 3-space. We define a generalization of a Kauffman bracket magma, which is called a marked Kauffman bracket magma. We find the conditions to be invariant under Yoshikawa moves except the first one and use a map from the set of admissible marked graph diagrams to a marked Kauffman bracket magma to obtain the invariant for surface-links in 4-space.