论文标题
贝叶斯非参数共同原子回归用于在临床试验中产生合成控制
Bayesian Nonparametric Common Atoms Regression for Generating Synthetic Controls in Clinical Trials
论文作者
论文摘要
电子健康记录的可用性(EHR)为补充越来越昂贵且难以进行随机对照试验(RCT)提供了机会,并提供了随时可用的现实世界数据的证据。在本文中,我们使用EHR数据来构建合成控制臂进行仅处理的单臂试验。我们提出了一种新型的非参数贝叶斯共同原子混合模型,该模型使我们能够在EHR和治疗组中找到等效的种群层,然后在单臂试验和重新采样的EHR下重新置于EHR数据以创建等效的患者人群。重新采样是通过无密度的重要性采样方案实现的。使用合成控制臂,可以使用可用于RCT的任何方法来进行治疗效果的推断。另外,提出的非参数贝叶斯模型可以直接基于模型的推断。在仿真实验中,所提出的方法比检测治疗效应的替代方法具有更高的功率,特别是针对非线性反应函数的功率。我们采用该方法来补充基于历史试验的合成控制臂的单臂治疗仅限胶质母细胞瘤研究。
The availability of electronic health records (EHR) has opened opportunities to supplement increasingly expensive and difficult to carry out randomized controlled trials (RCT) with evidence from readily available real world data. In this paper, we use EHR data to construct synthetic control arms for treatment-only single arm trials. We propose a novel nonparametric Bayesian common atoms mixture model that allows us to find equivalent population strata in the EHR and the treatment arm and then resample the EHR data to create equivalent patient populations under both the single arm trial and the resampled EHR. Resampling is implemented via a density-free importance sampling scheme. Using the synthetic control arm, inference for the treatment effect can then be carried out using any method available for RCTs. Alternatively the proposed nonparametric Bayesian model allows straightforward model-based inference. In simulation experiments, the proposed method exhibits higher power than alternative methods in detecting treatment effects, specifically for non-linear response functions. We apply the method to supplement single arm treatment-only glioblastoma studies with a synthetic control arm based on historical trials.