论文标题
集成量子光子处理器中热力学的量子模拟
Quantum simulation of thermodynamics in an integrated quantum photonic processor
论文作者
论文摘要
量子物理学的核心问题之一是如何调和量子状态的统一演变,量子状态的统一进化是信息提供和时间可逆的,并且按照热力学的第二种定律的进化,这通常都不是。对该悖论的解决方案是认识到,多目标量子状态的全球统一演变导致局部子系统的状态朝向最大渗透状态。在这项工作中,我们通过同时显示局部量子状态与在精确控制条件下构成最大渗透态的广义吉布斯集合的收敛,同时引入有效的认证方法,以证明该状态保持全球纯度,从而在线性量子光学元件中证明了这种效果。我们的量子状态由可编程的综合量子光子处理器操纵,该过程模拟了任意的非交互式哈密顿量,证明了这种现象的普遍性。我们的结果表明,光子设备对涉及非高斯州的量子模拟的潜力。
One of the core questions of quantum physics is how to reconcile the unitary evolution of quantum states, which is information-preserving and time-reversible, with evolution following the second law of thermodynamics, which, in general, is neither. The resolution to this paradox is to recognize that global unitary evolution of a multi-partite quantum state causes the state of local subsystems to evolve towards maximum-entropy states. In this work, we experimentally demonstrate this effect in linear quantum optics by simultaneously showing the convergence of local quantum states to a generalized Gibbs ensemble constituting a maximum-entropy state under precisely controlled conditions, while introducing an efficient certification method to demonstrate that the state retains global purity. Our quantum states are manipulated by a programmable integrated quantum photonic processor, which simulates arbitrary non-interacting Hamiltonians, demonstrating the universality of this phenomenon. Our results show the potential of photonic devices for quantum simulations involving non-Gaussian states.