论文标题

关于颜色的数量

The extremality of 2-partite Turán graphs with respect to the number of colorings

论文作者

Fuentes, Melissa M

论文摘要

我们考虑了Linial和Wilf提出的一个问题,以确定图形结构,该结构允许具有$ n $顶点和$ M $边缘的图表中最大数量的$ Q $ - 色。令$ t_r(n)$表示Turán图 - $ n $顶点上的完整$ r $ - 分段图,分区尺寸尽可能相等。我们证明,对于所有奇数整数$ q \ geq 5 $和足够大的$ n $,turán图$ t_2(n)$具有与任何其他图形$ g $具有相同数量的顶点和边缘的$ q $ colorings,与$ t_2(n)$相同,仅等于$ g = t_2(n)$。我们的证明是基于Norine和Loh,Pikhurko和Sudakov的方法的基础,这些方法将问题减少到了二次程序。

We consider a problem proposed by Linial and Wilf to determine the structure of graphs that allows the maximum number of $q$-colorings among graphs with $n$ vertices and $m$ edges. Let $T_r(n)$ denote the Turán graph - the complete $r$-partite graph on $n$ vertices with partition sizes as equal as possible. We prove that for all odd integers $q\geq 5$ and sufficiently large $n$, the Turán graph $T_2(n)$ has at least as many $q$-colorings as any other graph $G$ with the same number of vertices and edges as $T_2(n)$, with equality holding if and only if $G=T_2(n)$. Our proof builds on methods by Norine and by Loh, Pikhurko, and Sudakov, which reduces the problem to a quadratic program.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源