论文标题

利用双向全球过渡模式和个人喜好缺少POI类别标识

Exploiting Bi-directional Global Transition Patterns and Personal Preferences for Missing POI Category Identification

论文作者

Xi, Dongbo, Zhuang, Fuzhen, Liu, Yanchi, Zhu, Hengshu, Zhao, Pengpeng, Tan, Chang, He, Qing

论文摘要

近年来,基于位置的社交网络(LBSN)服务越来越普及,该服务提供了建立个性化利益点(POI)推荐系统的无与伦比的机会。现有的POI建议和位置预测任务利用过去的信息从单个方向角度来进行未来的建议或预测,而缺失的POI类别标识任务需要在缺失类别之前和之后使用签入信息。因此,长期以来的挑战是如何在移动用户的现实登机数据中任何时间有效地识别缺失的POI类别。为此,在本文中,我们提出了一种新型的神经网络方法,通过整合双向全球非个人过渡模式和用户的个人喜好来识别缺失的POI类别。具体而言,我们精心设计了一个注意匹配的单元格,以模拟签到类别信息与其非个人过渡模式和个人喜好相匹配的程度。最后,我们在两个现实世界数据集上评估了我们的模型,这些模型与最先进的基线相比明显验证了其有效性。此外,我们的模型可以自然扩展,以解决下一个POI类别建议和竞争性能的预测任务。

Recent years have witnessed the increasing popularity of Location-based Social Network (LBSN) services, which provides unparalleled opportunities to build personalized Point-of-Interest (POI) recommender systems. Existing POI recommendation and location prediction tasks utilize past information for future recommendation or prediction from a single direction perspective, while the missing POI category identification task needs to utilize the check-in information both before and after the missing category. Therefore, a long-standing challenge is how to effectively identify the missing POI categories at any time in the real-world check-in data of mobile users. To this end, in this paper, we propose a novel neural network approach to identify the missing POI categories by integrating both bi-directional global non-personal transition patterns and personal preferences of users. Specifically, we delicately design an attention matching cell to model how well the check-in category information matches their non-personal transition patterns and personal preferences. Finally, we evaluate our model on two real-world datasets, which clearly validate its effectiveness compared with the state-of-the-art baselines. Furthermore, our model can be naturally extended to address next POI category recommendation and prediction tasks with competitive performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源