论文标题

人造2D莫特构造的正方形晶格中的室温超导性及其先进的凝结阶段,在大气中产生低损失电流:可能的永久运动机器

Room-temperature superconductivity in an artificial 2D Mott-insulating square lattice and its advanced condensed phase that generates a low-loss current in the atmosphere: A possible perpetual motion machine

论文作者

Zen, N.

论文摘要

2D金属语音晶体(PNC)通过在悬浮的尼伯膜(NB)膜中的周期性孔进行钻孔来制造,在2--300 K的温度范围内反复冷却并温暖。在前五个温度周期中,在较范围内,金属PNC的阻力逐渐与Friedel-sur规则相对,并逐渐融合。 $ d $ - 充满莫特的莫特绝缘子。随之而来的2D Mott-Munting Square Grattice是高温超导体(例如YBCO和BSCCO)中铜氧化物层的晶体学类似物。随后产生的理想哈伯德晶体的随后温度循环在60 K处实现零电阻,零电阻保持在大气中(即在室温,陆地磁场和大气压下)保留在大气中(即,在室温,在室温下,在室温下)。在这项研究中,后一种温度周期的必要性尚不清楚。但是,讨论了涉及约瑟夫森和充电效应的可能的过渡机制。室温超导体(RTSC)的关键电流和关键场分别为$ i_ {c} $ = 18.8 ma和$μ_{0} h _ {\ perp} $ = 12 t。一旦将超过$ i_ {c} $的大电流应用于RTSC,其中一些$ d $电子就会被强制出现,并且形成了由P型半导体和超导状态组成的特殊接口。载体由于非平衡电荷浓度而扩散,但它们是Andreev反射的。在可逆的热隔离系统中,熵永远不会增加,一个简单的实验可以自发地从界面产生的低损失电流。也就是说,这项研究挑战了禁止的永久运动机器,这可能是解决世界能源危机的解决方案。

A 2D metallic phononic crystal (PnC), which is fabricated by drilling periodic holes in a suspended niobium (Nb) film, is repeatedly cooled and warmed in the temperature range of 2--300 K. During the first five temperature cycles, the resistance of the metallic PnC gradually increases in accordance with the Friedel sum rule, indicating that narrow Nb bridges between adjacent thru-holes are converted into $d$-orbital-filled Mott insulators. The consequent 2D Mott-insulating square lattice is a crystallographic analog of a copper oxide layer in high-temperature superconductors such as YBCO and BSCCO. Subsequent temperature cycles of the thus produced ideal Hubbard crystal realize zero resistance at 60 K, and the zero-resistance state remains up to 300 K, being retained in the atmosphere (i.e., at room temperature, in a terrestrial magnetic field, and under atmospheric pressure). The necessity of the latter temperature cycles remains unclear in this study; however, a possible transition mechanism involving the combined Josephson and charging effects is discussed. The critical current and critical field of the room-temperature superconductor (RTSC) are $I_{C}$ = 18.8 mA and $μ_{0}H_{\perp}$ = 12 T, respectively. Once a large current exceeding $I_{C}$ is applied to the RTSC, some of the $d$ electrons are forced out, and a special interface consisting of the p-type semiconducting and superconducting states is formed. Carriers diffuse because of the nonequilibrium charge concentration, but they are Andreev-reflected back. In the reversible, thermally isolated system, the entropy never increases, and a simple experiment confirms a low-loss current generated from the interface spontaneously. That is, this study challenges the forbidden perpetual motion machine which can be a solution to the World energy crisis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源