论文标题

corrnet3d:3D点云的密集对应的无监督端到端学习

CorrNet3D: Unsupervised End-to-end Learning of Dense Correspondence for 3D Point Clouds

论文作者

Zeng, Yiming, Qian, Yue, Zhu, Zhiyu, Hou, Junhui, Yuan, Hui, He, Ying

论文摘要

与未经对象的一对相比,我们可以更轻松,更有意义地将两个对齐的点云更轻松,更有意义地转换为,我们提出了Corrnet3D(第一个无人监督和端到端的基于深度学习的框架),以通过类似于不形态的型号来驱动3D形状之间对3D形状之间的密集对应,以克服所需的报名数据。具体而言,corrnet3d由一个深度特征嵌入模块和两个新型模块组成,称为对应指标和对称变形器。我们的模型为一对原始点云喂食,首先学习了点的特征,并将其传递到指示器中,以生成用于填充输入对的可学习的对应矩阵。对称变形器具有额外的正规损失,将两个排列的点云彼此转换为驱动对应关系的无监督学习。对刚性和非刚性3D形状的合成和实际数据集进行的广泛实验表明,我们的Corrnet3D在很大程度上均优于最先进的方法,包括那些将网格作为输入的方法。 Corrnet3D是一个灵活的框架,因为如果有带注释的数据,它可以轻松地适应监督的学习。源代码和预培训模型将在https://github.com/zengyiming-eamon/corrnet3d.git上找到。

Motivated by the intuition that one can transform two aligned point clouds to each other more easily and meaningfully than a misaligned pair, we propose CorrNet3D -- the first unsupervised and end-to-end deep learning-based framework -- to drive the learning of dense correspondence between 3D shapes by means of deformation-like reconstruction to overcome the need for annotated data. Specifically, CorrNet3D consists of a deep feature embedding module and two novel modules called correspondence indicator and symmetric deformer. Feeding a pair of raw point clouds, our model first learns the pointwise features and passes them into the indicator to generate a learnable correspondence matrix used to permute the input pair. The symmetric deformer, with an additional regularized loss, transforms the two permuted point clouds to each other to drive the unsupervised learning of the correspondence. The extensive experiments on both synthetic and real-world datasets of rigid and non-rigid 3D shapes show our CorrNet3D outperforms state-of-the-art methods to a large extent, including those taking meshes as input. CorrNet3D is a flexible framework in that it can be easily adapted to supervised learning if annotated data are available. The source code and pre-trained model will be available at https://github.com/ZENGYIMING-EAMON/CorrNet3D.git.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源