论文标题

通过零射击翻译的增量嵌入学习

Incremental Embedding Learning via Zero-Shot Translation

论文作者

Wei, Kun, Deng, Cheng, Yang, Xu, Li, Maosen

论文摘要

现代深度学习方法通​​过学习一组预定义的数据集在机器学习和计算机视野领域取得了巨大成功。 HOWERVER,当应用于现实世界中时,这些方法的性能不令人满意。这种现象的原因是,学习新任务会导致受过训练的模型迅速忘记了旧任务的知识,这被称为灾难性遗忘。当前最新的增量学习方法解决了传统分类网络中的灾难性遗忘问题,而忽略了嵌入网络中存在的问题,这些问题是图像检索,面部识别,零拍学习等的基本网络。与传统的增量分类网络不同,与传统的递增网络不同,在两个相邻的网络之间进行了启动的嵌入式网络之间的语义差距,以实现两个邻近的启动范围。因此,我们提出了一种嵌入网络的新型类信息方法,称为零击翻译类别插入方法(ZSTCI),该方法利用零摄像转换来估算并补偿没有任何示例的语义差距。然后,我们尝试在顺序学习过程中学习两个相邻任务的统一表示形式,该任务准确地捕获了以前的类和当前类的关系。此外,ZSTCI可以轻松地与现有的基于正则化的增量学习方法结合使用,以进一步提高嵌入网络的性能。我们在CUB-200-2011和CIFAR100上进行了广泛的实验,实验结果证明了我们方法的有效性。我们方法的代码已发布。

Modern deep learning methods have achieved great success in machine learning and computer vision fields by learning a set of pre-defined datasets. Howerver, these methods perform unsatisfactorily when applied into real-world situations. The reason of this phenomenon is that learning new tasks leads the trained model quickly forget the knowledge of old tasks, which is referred to as catastrophic forgetting. Current state-of-the-art incremental learning methods tackle catastrophic forgetting problem in traditional classification networks and ignore the problem existing in embedding networks, which are the basic networks for image retrieval, face recognition, zero-shot learning, etc. Different from traditional incremental classification networks, the semantic gap between the embedding spaces of two adjacent tasks is the main challenge for embedding networks under incremental learning setting. Thus, we propose a novel class-incremental method for embedding network, named as zero-shot translation class-incremental method (ZSTCI), which leverages zero-shot translation to estimate and compensate the semantic gap without any exemplars. Then, we try to learn a unified representation for two adjacent tasks in sequential learning process, which captures the relationships of previous classes and current classes precisely. In addition, ZSTCI can easily be combined with existing regularization-based incremental learning methods to further improve performance of embedding networks. We conduct extensive experiments on CUB-200-2011 and CIFAR100, and the experiment results prove the effectiveness of our method. The code of our method has been released.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源